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We determine the shot-noise asymmetry of a quantum dot under reversal of an external magnetic field. The
dot is coupled to edge states which invert their chirality when the field is reversed, leading to a magnetoasym-
metric electrochemical potential in the nanostructure. Surprisingly, we find an exact relation between the
magnetoasymmetries corresponding to the nonlinear conductance and the shot noise to leading order in the
applied bias, implying a higher-order fluctuation-dissipation relationship. Our calculations also show a mag-
netoasymmetry of the full probability distribution of the transferred charge.
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I. INTRODUCTION

Recently, it has been theoretically demonstrated1–6 and
experimentally verified7–13 that the Onsager-Casimir reci-
procity relations14,15 cannot be, in general, extended to me-
soscopic transport far from equilibrium. Departures of mi-
croreversibility at equilibrium have been related to the
interaction of the nanostructure with an environment driven
out of equilibrium.16 In both cases, it is found that the current
flowing through the system is not invariant under reversal of
the external magnetic field, leading to the observation of
magnetoasymmetries solely due to the asymmetric properties
of the internal electrostatic potential. Thus, the effect is in-
duced purely by electron interactions.

Previous literature has discussed the size of the magne-
toasymmetries for the electric conductance. Here, we are
concerned with the shot noise, which is known to offer a
complementary and, quite often, unique tool to probe elec-
tronic transport in quantum correlated nanostructures.17 Shot
noise has been shown to reveal electronic entanglement de-
tection in mesoscopic interferometers,18 dynamical spin
blockade in dots attached to ferromagnetic leads,19 quantum
shuttling in nanoelectromechanical systems,20 nonequilib-
rium lifetime broadenings in cotunneling currents,21 and
quantum coherent coupling in double quantum dots,22 just to
mention a few.

It is worth noting that the linear conductance and the equi-
librium noise are related each other via the linear fluctuation-
dissipation theorem, which is a general statement about the
response of a system near equilibrium and its dynamical
fluctuations induced by random forces.23 For mesoscopic
conductors the theorem is expressed as the Johnson-Nyquist
formula between equilibrium current fluctuations and the lin-
ear conductance.17 Both the linear conductance and the cur-
rent fluctuations at equilibrium obey reciprocity relations.24

At nonequilibrium, however, Onsager’s microreversibility is
generally not fulfilled. Notably, our calculations explicitly
show an exact relation between both magnetoasymmetries
corresponding to the noise susceptibility and the nonlinear
conductance to leading order in the applied voltage bias, im-
plying a higher-order fluctuation-dissipation relationship. Re-
cent works25,26 find similar fluctuation relations.

II. SYSTEM

We show our result considering a simple but paradigmatic
mesoscopic system—a quantum dot in the Coulomb-

blockade regime for which the charge is quantized and trans-
port is blocked at low temperature unless charging energy is
supplied by external voltage.27,28 We study a dot coupled to
two chiral states29,30 �filling factor �=1� propagating along
the opposite edges of a quantum Hall conductor, as shown in
Fig. 1. For positive magnetic fields B�0 carriers in the up-
per �lower� edge state move from the left �right� terminal to
the right �left� terminal. The current flow is reversed for B
�0. Coupling between the dot and the edge states takes
place via tunnel couplings ��1 and ��2 and capacitive cou-
plings C1 and C2.

We consider a single energy level E0 which can be exter-
nally tuned with a gate voltage. �E0 is a kinetic-energy in-
variant under B reversal�. The dot lies deep in the Coulomb-
blockade regime for which E0+e2 /C �with C=C1+C2� is
well above the electrochemical potentials ��=EF+eV�

��=L ,R� of both left �L� and right �R� leads, EF being the
common Fermi energy. We assume that each edge state is in
equilibrium with its corresponding injecting reservoir. There-
fore, they act effectively as massive electrodes with well-
defined electrochemical potentials. Without loss of general-
ity, we take VL=−VR=V /2 with V as the applied bias
voltage.

For temperatures kBT and voltages low enough, kBT ,eV
	e2 /C �but kBT sufficiently high to neglect Kondo correla-
tions�, the charging energy e2 /C is the dominant energy scale
of the problem and double occupation in the dot is negli-
gible. In the master-equation approach, the charging state of
the dot is given by an integer number of electrons, n. We
assume that quantum coherence between states with differing
n is lost, as occurs in the pure Coulomb-blockade regime.
For definiteness, we consider spin-polarized carriers, al-
though the model can be easily extended to the spinful case.
Thus, the dot can be either in the empty state �n=0� or in the
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FIG. 1. Sketch of a quantum dot coupled to chiral edge states
via tunnel and capacitive couplings. The sample is driven out of
equilibrium with an external bias VL=−VR=V /2.
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occupied state �n=1� with instantaneous occupation prob-
ability pn�t� at time t. The main transport mechanism is via
single-electron tunneling ��1 ,�2	kBT /�� and we can write
quantum rate equations for p0�t� and p1�t�,31–33

�ṗ0

ṗ1
� = �− 
+ 
−


+ − 
− ��p0

p1
� . �1�

In a more compact form, one has p�̇ =Mp� , where p� is the
vector with components p� = �p0 p1�T and the 2�2 matrix M
can be obtained from Eq. �1�. We note that the columns of M
add to zero to fulfill the condition p0+ p1=1 at every instant
of t. The elements of M represent transition rates, 
�, to
tunnel on ��= +1� and off the dot ��=−1�. The total rates are
given by 
�=��
�

� . For B�0 we find �see Fig. 1� 
L
+=�1f

�+B ,VL�, 
R
+ =�2f�+B ,VR�, 
L

−=�1�1− f�+B ,VL��, and 
R
−

=�2�1− f�+B ,VR��, where the occupation factors are given
by f�B ,V��=1 / �1+exp��d�B�−eV�� /kBT	 for EF=0. The
electrochemical potential in the dot, �d�B�, is self-
consistently found from the electrostatic configuration,
which depends on the B direction.34 For B�0, one has
�d�+B�=E0−eC1VL /2C−eC2VR /2C.

For B�0 the chirality of the edge states is inverted and
the nonequilibrium �VL�VR� polarization charge changes ac-
cordingly. Injected electrons in the upper �lower� edge state
are now predominantly emitted from lead R �L�. Therefore,
the rates now read 
L

+=�2f�−B ,VL�, 
R
+ =�1f�−B ,VR�, 
L

−

=�2�1− f�−B ,VL��, and 
R
− =�1�1− f�−B ,VR��, where

�d�−B�=E0−eC2VL /2C−eC1VR /2C. We stress that the rates
depend, quite generally, on the B direction and differ for
C1�C2. As demonstrated in Ref. 34, the magnetoasymmetry
of the polarization charge leads to a magnetoasymmetric ad-
dition energy of the quantum dot and, as a result, the current
average is an uneven function of B. We can thus ask our-
selves whether the current fluctuations also exhibit this ef-
fect.

Current fluctuations are characterized by the power spec-
trum, S����, of the current-current correlation function17

S���� = 2
 ei�t��I��t�I�0�� − �I���I��dt , �2�

where �I�� is the averaged current across the � junction. Its
stationary value can be found from the steady-state solution
of Eq. �1�, which reads p̄0=
− /
 and p̄1=
+ /
. As a conse-
quence,

�I�� = e�
�
+p̄0 − 
�

−p̄1� = e

�

+
− − 
�
−
+



, �3�

where 
=
++
−.
The correlator �I��t�I�0�� in Eq. �2� can be obtained from

the conditional probability pn,n��t� that the state n is occupied
at time t�0 when the dot was in the state n� at t=0. Within
our scheme the quantum regression theorem holds and
pn,n��t� obeys the same equations as pn�t�. Hence, the eigen-
values of M completely determine the dynamical behavior of
p. This can be seen from the noise expression S�=S�

Sch��

+S�
c , with S�

Sch as the Schottky noise produced by correlated
tunneling through a single junction and

S�
c ��� = �

�,��

���p̄�1−��/2�
�
��


� + 

��
�

� �G�1−���/2,���� , �4�

where the “Green’s function” matrix for Eq. �1� reads

G��� = − Re�i� + M�−1. �5�

Care must be taken with the �=0 limit since M is singular.
The matrix M has two eigenvalues, namely, �1=0 with an
eigenvector given by the stationary solution p�
= �
− /
 
+ /
�T and �2=−
, which describes a charge exci-
tation in the system. Therefore, we can now use in Eq. �5�
the spectral decomposition M=�i=1,2�iUEiU

−1, where Ei is a
matrix with the element �i , i� equal to 1 and the other ele-
ments are zeroes, the ith column of U being the ith eigen-
vector of M. The �1 contribution cancels out the term
�I���I�. As a result, G���=−�2UE2U−1 / ��2+�2

2� and we
find the shot noise S=−SLR at �=0,

S

2e2 =
�
L

+
R
− + 
L

−
R
+�
2 − 2�
L

+
R
− − 
L

−
R
+�2


3 . �6�

For B�0 and large bias such that eV�E0 , kBT, we have

L

+�1, 
L
−0, 
R

+ 0, and 
R
− �2. Substituting these val-

ues in Eq. �6� we recover the double barrier case for nonin-
teracting electrons, S=2e2�1�2��1

2+�2
2� /�3, where �=�1

+�2.

III. RESULTS

Figure 2 shows results for the averaged current I= �IL�
=−�IR� and the Fano factor F=S /2eI as a function of V. The
current is exponentially suppressed at low V, increases at V
�CE0 /eC1, and reaches the limit value e�1�2 /� for large
voltages. When B is reversed, the current now increases at
V�CE0 /eC2. Since we choose C1�C2 the I�V ,−B� is
shifted to larger voltages compared to I�V , +B�. As a conse-
quence, the differential conductance is generally B asymmet-
ric. The Fano factor is Poissonian at small V since transport
is dominated by thermal activated tunneling. For increasing
V, the noise becomes sub-Poissonian and reaches saturation
for large V. The crossover step from Poissonian noise to
sub-Poissonian noise has a width which depends on kBT.
Like the current, the crossover center shifts to larger voltages
when B is reversed, thus yielding a magnetoasymmetric Fano
factor.
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FIG. 2. �Color online� Current �black curves� and Fano factor
�red curves� as a function of bias voltage for �1=�2=0.005E0 /�,
kBT=0.1E0, C1=0.6, and C2=0.4.
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Since the Fano factor depends on both the noise and the
current and these are asymmetric under B reversal, we plot in
Fig. 3 the magnetic field asymmetry for the noise alone,
which we define as �S= �S�+B�−S�−B�� /2. The asymmetry
vanishes for small V, fulfilling the Onsager symmetry. At
large V the noise saturation value is independent of the B
direction since this limit corresponds to noninteracting fer-
mions. As a result, the asymmetry vanishes. The asymmetry
becomes maximal for intermediate voltages. Importantly, the
asymmetry increases with the capacitance asymmetry, �
= �C1−C2� /C. Therefore, the current fluctuations are magne-
toasymmetric only in the case where the electrostatic cou-
pling of the dot with the edge states leads to an asymmetric
screening of charges.

Furthermore, we consider the case of low voltages, eV
	kBT. Then, we can expand I and S in powers of V,

I = G1V + G2V2 + O�V3� , �7�

S = S0 + S1V + O�V2� . �8�

We have checked that both the linear conductance G1 and the
equilibrium noise S0 are even functions of B. They satisfy the
linear fluctuation-dissipation theorem, S0=4kBTG1. While
G1 depends on the equilibrium potential in the dot, the non-
linear conductance term G2 is, in general, a function of the
screening electrostatic potential.35 This potential need not be
B symmetric.1 Thus, the magnetoasymmetry �G2

= �G2�B�
−G2�−B�� /2 acquires a finite value

�G2
=

e3

8

�1�2

�

�

�kBT�2sech2 E0

2kBT
tanh

E0

2kBT
. �9�

For high kBT, Eq. �9� yields �G2
=0 since thermal fluctua-

tions are B symmetric. �G2
determines the rate at which the

current magnetoasymmetry increases with voltage, thus
showing that magnetoasymmetries are a truly nonequilib-
rium effect.

The nonequilibrium noise at linear response �i.e., S1 in
Eq. �8�� is also B asymmetric. To leading order in V, we find

�S1
= 4kBT�G2

, �10�

where �S1
= �S1�B�−S1�−B�� /2. This is a relevant result of

our work. Remarkably, we obtain the same functional depen-
dence for the magnetoasymmetries of noise and current in
the leading-order nonlinearities. We numerically confirm this
prediction for a small value of V �see inset of Fig. 3�. This
result can be related to the nonlinear fluctuation-dissipation
theorem, which reads S1=4kBTG2. It has been derived in
Ref. 36 for mesoscopic conductors at arbitrary voltages
within the framework of full counting statistics. Thus, it is
shown36 that the nonlinear fluctuation-dissipation theorem
holds even for interacting particles assuming time reversibil-
ity �no magnetic fields�. The nontrivial difference, however,
is that in our theory microreversibility is broken due to the
combined effect of magnetic fields and interactions1 but still
Eq. �10� holds. While detailed balance conditions are shown
to hold far from equilibrium in the absence of magnetic
fields,36–38 the same relations cannot, generally, be estab-
lished when microreversibility is broken.25 Despite this, we
obtain an unexpected symmetry relation between the conduc-
tance and noise response magnetoasymmetries.

We note in passing that Eq. �10� is not a generalization of
the fluctuation-dissipation theorem for which nonlinear fluc-
tuations and the response are related via a �nontrivial� effec-
tive temperature, as in glassy systems,39 since the prefactor
for both linear and nonlinear theorems is the same. Our result
also differs from more general fluctuation theorems obeyed
by full probability distributions.40

To analyze higher-order terms one should consider fluc-
tuations of the screening potential, which are beyond the
scope of a mean-field approximation. Nevertheless, for clas-
sical Coulomb-blockade effects the local potential fully
screens the excess charges and quantum fluctuations are ab-
sent. Therefore, our model system is perfectly suitable for
further extensions. We note that the Fano factor magne-
toasymmetry, �F= �F�B�−F�−B�� /2, is quadratic in voltage

�F =
�1�2

�2 �� eV

2kBT
�2

sech2 E0

2kBT
tanh

E0

2kBT
. �11�

A complete characterization of current fluctuations is
given by the full counting statistics,41 which yields the entire
probability distribution P�N� of the transferred charge during
the measurement time t0. We follow the method of Bagrets
and Nazarov42 to assess the cumulant generating function
S���=−ln�NP�N�eiN�. Without loss of generality, we count
charges in the R lead. Therefore, we make the substitutions

R

− →
R
−ei� and 
R

+ →
R
+e−i� in the off-diagonal elements of

M and S��� is derived from S���= t0�2���. We calculate
P�N� within the saddle-point approximation, valid in the
limit t0→� �Ref. 42� and determine the magnetoasymmetry
of P�N�. We show �P= �P�N , +B�− P�N ,−B�� /2 in Fig. 4.
��P� increases for increasing capacitance asymmetry and
vanishes around N��t0 /4. This point corresponds to the

mean current Ī=e� /4 for a dot symmetrically coupled
��1=�2� in the limit eV�kBT.
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FIG. 3. �Color online� Shot-noise magnetoasymmetry for vari-
ous capacitance asymmetries �= �C1−C2� / �C1+C2�. We take �1

=�2=0.005E0 /� and kBT=0.1E0. Inset: Magnetoasymmetries of the
leading-order nonlinear conductance and nonequilibrium noise at
V=0.03E0 /e.
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IV. CONCLUSIONS

To summarize, we have investigated magnetoasymmetric
current fluctuations of a Coulomb-blockaded quantum dot. It
is well established that the linear fluctuation-dissipation theo-

rem makes an equivalence between linear-response functions
to small perturbations and correlation functions describing
fluctuations due to electric motion. In this work, we have
found a similar fluctuation-dissipation relation that predicts
an exact equivalence between the leading-order rectification
and noise magnetoasymmetries, valid in the presence of ex-
ternal magnetic fields. Such relation has been very recently
shown to derive from fundamental principles.25 Moreover,
we have shown that the full probability distribution associ-
ated to the flow of charges is, generally, magnetic-field
asymmetric. Since the effect studied here relies purely on
interaction, it should be observable in many other systems
exhibiting strong charging effects.
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